Journal of Catalysis 267 (2009) iii-v

Contents lists available at ScienceDirect

JOURNAL OF CATALYSIS

pp 1-4

pp 5-13

Journal of Catalysis

journal homepage: www.elsevier.com/locate/jcat

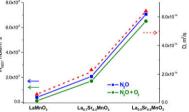
Journal of Catalysis Vol. 267, Issue 1, 2009

Contents

PRIORITY COMMUNICATION

Metal organic frameworks as efficient heterogeneous catalysts for the oxidation of benzylic compounds with *t*-butylhydroperoxide

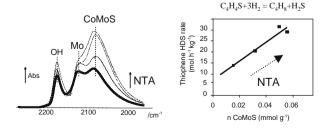
Amarajothi Dhakshinamoorthy, Mercedes Alvaro, Hermenegildo Garcia*



Iron and copper metal organic frameworks of 1,3,5-benzenetricarboxylate serve to oxidize benzylic compounds with *t*-butylhydroperoxide in acetonitrile under mild reaction conditions. MOFs act as heterogeneous catalysts and can be reused for consecutive runs.

REGULAR ARTICLES

Influence of oxygen mobility on catalytic activity of La–Sr–Mn–O composites in the reaction of high temperature N_2O decomposition


D.V. Ivanov*, E.M. Sadovskaya, L.G. Pinaeva, L.A. Isupova

Mechanism of oxygen exchange in single- and multiphase La–Sr–Mn–O samples was studied by steady-state isotopic transient kinetic analysis (900 $^{\circ}$ C). Strong correlation between oxygen mobility and the rate of N₂O decomposition was found.

Effect of NTA addition on the structure and activity of the active phase of cobalt-molybdenum sulfide hydrotreating pp 14–23 catalysts

M.A. Lélias, P.J. Kooyman, L. Mariey, L. Oliviero, A. Travert, J. van Gestel, J.A.R. van Veen, F. Maugé*

Comparison of activity and spectroscopic data of the sulfide catalysts prepared with nitrilo triacetic acid (NTA) implies that the increase of Co-promoted sites accounts for catalytic activity enhancement, and evidences the creation of different kinds of active sites.

Meso- and nano-structuring of industrial Cu/ZnO/(Al₂O₃) catalysts

Malte Behrens

Industrial Cu/ZnO/Al₂O₃ catalysts are prepared via two hierarchical microstructure-directing steps: (i) meso-structuring of the precursor material upon ageing and (ii) nanostructuring of the oxide material upon calcination.

Enhancement of biphenyl hydrogenation over gold catalysts supported on Fe-, Ce- and Ti-modified mesoporous silica pp 30-39 (HMS)

Pedro Castaño, T.A. Zepeda, B. Pawelec, Michiel Makkee, J.L.G. Fierro*

This paper describes the properties and kinetic performance of Au/HMS-M (M = [-], Ce, Ti and Fe) catalyst during the aromatic liquid hydrogenation. The trend of catalytic activity is linked with: (i) the higher ratio of positively charged metallic gold Au⁵⁺/Si (XPS), and (ii) the higher stability of Au nanoparticles (HRTEM). A linear correlation between the activity of the catalysts and their ratio Au⁵⁺/Si is observed; however, Au/HMS-Ce catalyst displays an enhanced activity due to the interaction Au-CeO₂ which favours the hydrogenation.

H;@393K

PdO

H;@673K

1

KPdO mixed phase

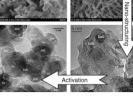
H_@823K

Influence of K-doping on a Pd/SiO₂-Al₂O₃ catalyst

R. Pellegrini, G. Leofanti, G. Agostini, L. Bertinetti, S. Bertarione, E. Groppo *, A. Zecchina, C. Lamberti

5

odK4

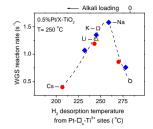

SA K-SA

Liquid phase hydrogenation of α,β -unsaturated aldehydes over gold supported on iron oxides

Jennifer Lenz, Betiana C. Campo, Mariana Alvarez, María A. Volpe*

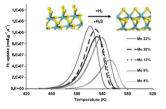
In the liquid phase hydrogenation of crotonaldehyde and cinnamaldehyde, Au nanoparticles supported on α -Fe₂O₃ show enhanced selectivity toward the unsaturated alcohol.

	10	
		3-60
1000		100
10	0	50 nm



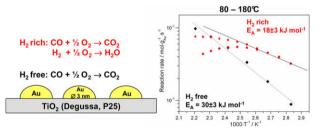
pp 50-56

Effects of alkali promotion of TiO₂ on the chemisorptive properties and water–gas shift activity of supported noble metal catalysts


Paraskevi Panagiotopoulou, Dimitris I. Kondarides*

The water-gas shift activity of alkali-promoted Pt/X-TiO₂ catalysts (X = Li, Na, K, Cs) exhibits a volcano-type dependence on the chemisorption strength of Pt- \Box_s -Ti³⁺ sites located at the metal-support interface.

Temperature-programed reduction of unpromoted MoS₂-based hydrodesulfurization catalysts: Experiments and kinetic pp 67–77 modeling from first principles


Nicolas Dinter, Marko Rusanen, Pascal Raybaud, Slavik Kasztelan, Pedro da Silva, Hervé Toulhoat *

Temperature-programed reduction profiles of presulfided MoS_2/γ -Al₂O₃ hydrotreating catalysts reveal Mo content dependant shapes and peak temperatures: a theoretical interpretation based on first principles is provided.

Activity, stability, and deactivation behavior of supported Au/TiO₂ catalysts in the CO oxidation and preferential CO pp 78–88 oxidation reaction at elevated temperatures

Yvonne Denkwitz, Birgit Schumacher, Gabriela Kučerová, R. Jürgen Behm*

The mechanisms governing the oxidation of CO on Au/TiO₂ catalysts, both in the absence of H_2 and in H_2 -rich gas mixtures, the deactivation behavior and the apparent activation barrier for CO oxidation over these catalysts at elevated temperatures, in the range 80–180 °C, were investigated. Distinct temperature effects were observed, they are discussed in a molecular picture.

RESEARCH NOTE

Promoting effect of Mo on the hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol over Rh/SiO₂

pp 89-92

Shuichi Koso, Naoyuki Ueda, Yasunori Shinmi, Kazu Okumura, Tokushi Kizuka, Keiichi Tomishige*

Selective hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol was catalyzed by Rh-MoO_x/SiO₂ catalysts. Biomass-derived tetrahydrofurfuryl alcohol is selectively converted to 1,5-pentanediol by Rh-MoO_x/SiO₂-catalyzed hydrogenolysis. The catalysts can be reused without loss of activity and selectivity.

pp 57-66